Abstract

In this paper, non-additivity of a set function is interpreted as a method to express relations between sets which are not modeled in a set theoretic way. Drawing upon a concept called “quasi-analysis” of the philosopher Rudolf Carnap, we introduce a transform for sets, functions, and set functions to formalize this idea. Any image-set under this transform can be interpreted as a class of (quasi-)components or (quasi-)properties representing the original set. We show that non-additive set functions can be represented as signed σ-additive measures defined on sets of quasi-components. We then use this interpretation to justify the use of non-additive set functions in various applications like for instance multi criteria decision making and cooperative game theory. Additionally, we show exemplarily by means of independence, conditioning, and products how concepts from classical measure and probability theory can be transfered to the non-additive theory via the transform.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call