Abstract
An alternating phenylenevinylene copolymer P with perylene bisimide units has been used as organic sensitizer to fabricate dye-sensitized solar cells (DSSCs) based on porous and TiCl 4 modified TiO 2 photoelectrodes. As a consequence of the compact layer formed by TiCl 4 treatment to the porous TiO 2 thin film layer, an efficient electron network was formed. Dark current measurements and electrochemical impedance spectra (EIS) suggested that modified photoelectrode significantly reduced the recombination rate of electrons with redox couple in the electrolyte due to the reduced bare FTO surface and longer electron lifetime as compared to the porous TiO 2 photoelectrode. The power conversion efficiency of DSSCs utilizing this copolymer as sensitizer is about 2.60% and 3.98% with porous and modified TiO 2 photoelectrodes, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.