Abstract

A Strain Gradient Theory of plasticity is introduced, based on the notion of statistically stored and geometrically necessary dislocations. The strain gradient theory fits within the general framework of couple stress theory and involves a single material length scale l. Minimum principles are developed for both deformation and flow theory versions of the theory which in the limit of vanishing l, reduce to their conventional counterparts: J 2 deformation and J 2 flow theory. The strain gradient theory is used to calculate the size effect associated with macroscopic strengthening due to a dilute concentration of bonded rigid particles; similarly, predictions are given for the effect of void size upon the macroscopibic softening due to a dilute concentration of voids. Constitutive potentials are derived for this purpose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.