Abstract

Many coherent imaging applications that utilize ultrafast X-ray free-electron laser (XFEL) radiation pulses are highly sensitive to fluctuations in the shot-to-shot statistical properties of the source. Understanding and modelling these fluctuations are key to successful experiment planning and necessary to maximize the potential of XFEL facilities. Current models of XFEL radiation and their shot-to-shot statistics are based on theoretical descriptions of the source and are limited in their ability to capture the shot-to-shot intensity fluctuations observed experimentally. The lack of accurate temporal statistics in simulations that utilize these models is a significant barrier to optimizing and interpreting data from XFEL coherent diffraction experiments. Presented here is a phenomenological model of XFEL radiation that is capable of capturing the shot-to-shot statistics observed experimentally using a simple time-dependent approximation of the pulse wavefront. The model is applied to reproduce non-stationary shot-to-shot intensity fluctuations observed at the European XFEL, whilst accurately representing the single-shot properties predicted by FEL theory. Compared with previous models, this approach provides a simple, robust and computationally inexpensive method of generating statistical representations of XFEL radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.