Abstract

In the current study, a 1-D phenomenological model is constructed to capture the temperature-induced hysteretic response in polycrystalline shape memory alloys (SMAs). The martensitic and austenitic transformations are regarded as the first-order transitions. A differential single-crystal model is formulated on the basis of Landau theory. It is assumed that the transformation temperatures follow the normal distribution among the grains due to the anisotropic stress field developed in the material. The polycrystalline hysteretic response is expressed as the integration of single-crystal responses. Besides, the prediction strategy for incomplete transitions is presented, and the first-order reversal curves are obtained via density reassignment. The proposed model is numerically implemented for validation. Comparisons between the modeling results and the experimental ones demonstrate the capability of the proposed model in addressing the hysteresis in thermally-induced phase transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.