Abstract

We advance a three-dimensional phenomenological model for the magneto-mechanical behavior of magnetic shape memory alloys. Moving from micromagnetic considerations, we propose a thermodynamically consistent constitutive relation which is able to reproduce the magnetically-induced martensitic transformation in single crystals. Existence results for the constitutive relation problem as well as for the corresponding quasi-static evolution system are illustrated and convergence of time- and space–time-discretizations are recorded. Eventually, we present algorithmic considerations and we numerically test the model in order to assess its ability in reproducing the typical response of magnetic shape memory alloys, as well as in recovering standard shape-memory and pseudo-elastic behaviors when no magnetic field is present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.