Abstract

We propose a minimalist phenomenological model for the ‘interfacial water’ phenomenon that occurs near hydrophilic polymeric surfaces. We achieve this by combining a Ginzburg–Landau approach with Maxwell’s equations which leads us to a well-posed model providing a macroscopic interpretation of experimental observations. From the derived governing equations, we estimate the unknown parameters using experimental measurements from the literature. The resulting profiles of the polarization and electric potential show exponential decay near the surface, in qualitative agreement with experiments. Furthermore, the model’s quantitative prediction of the electric potential at the hydrophilic surface is in excellent agreement with experiments. The proposed model is a first step towards a more complete parsimonious macroscopic model that will, for example, help to elucidate the effects of interfacial water on cells (e.g. neuronal excitability), the effects of infrared neural stimulation or the effects of drugs mediated by interfacial water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call