Abstract
This paper studies the effects of annealing time on the specific heat enthalpy of polystyrene above the glass transition temperature. We extend the Tool-Narayanaswamy-Moynihan (TNM) model to describe the endothermic overshoot peaks through the dynamic mechanical spectra. In this work, we accept the viewpoint that the enthalpy recovery behavior of glassy polystyrene (PS) has a common structural relaxation mode with linear viscoelastic behavior. As a consequence, the retardation spectrum evaluated from the dynamic mechanical spectra around the primary Tg peak is used as the recovery function of the endothermic overshoot of specific heat. In addition, the sub-Tg shoulder peak around the Tg peak is found to be related to the structural relaxation estimated from light scattering measurements. The enthalpy recovery of annealed PS is quantitatively described using retardation spectra of the primary Tg, as well as the kinetic process of the sub-Tg relaxation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.