Abstract
People with misophonia have strong aversive reactions to specific "trigger" sounds. Here we challenge this key idea of specificity. Machine learning was used to identify a misophonic profile from a multivariate sound-response pattern. Misophonia could be classified from most sounds (traditional triggers and non-triggers) and, moreover, cross-classification showed that the profile was largely transferable across sounds (rather than idiosyncratic for each sound). By splitting our participants in other ways, we were able to show-using the same approach-a differential diagnostic profile factoring in potential co-morbidities (autism, hyperacusis, ASMR). The broad autism phenotype was classified via aversions to repetitive sounds rather than the eating sounds most easily classified in misophonia. Within misophonia, the presence of hyperacusis and sound-induced pain had widespread effects across all sounds. Overall, we show that misophonia is characterized by a distinctive reaction to most sounds that ultimately becomes most noticeable for a sub-set of those sounds.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.