Abstract
BackgroundMeasurement errors produce bias and uncertainty. They affect the outcomes of data-fitted models. Unfortunately, tuberculosis incidence data providers do not appear to be interested in this topic. MethodWe use a phenomenological approach to describe and forecast tuberculosis incidence numbers in the US, and England and Wales as a function of time. We use a heuristic method to evaluate if the lack of fit of our descriptive models to the data could be explained by measurement errors. FindingsWe find that if the lack of fit of our proposed models to the data is due to measurement errors, these are not so large as to make the models useless. We find numerical regularities that provide trustworthy tools to make a description and forecast the tuberculosis incidence trends. InterpretationMeasurement errors of epidemiological data collected "in the field" are probably large and could justify the lack of fit of an epidemic model to the data. Thus, to choose an appropriate model to describe an epidemic, we propose to assess the magnitude of measurement errors and apply the epidemic theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.