Abstract

There are two main approaches to unraveling the mechanisms involved in the regulation of collective cell movement. On the one hand, "in vitro" tests try to represent "in vivo" conditions. On the other hand, "in silico" tests aim to model this movement through the use of complex numerically implemented mathematical methods. This paper presents a simple cell-based mathematical model to represent the collective movement phenomena. This approach is used to better understand the different interactive forces which guide cell movement, focusing mainly on the role of the cell propulsion force with the substrate. Different applications are simulated for 2D cell cultures, wound healing, and collective cell movement in substrates with different degrees of stiffness. The model provides a plausible explanation of how cells work together in order to regulate their movement, showing the significant influence of the propulsive force exerted by the cell to the substrate on guiding the collective cell movement and its interplay with other cell forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call