Abstract

Fusarium graminearum is an important plant pathogen that causes head blight of major cereal crops. The fungus produces mycotoxins that are harmful to animal and human. In this study, a systematic analysis of 17 phenotypes of the mutants in 657 Fusarium graminearum genes encoding putative transcription factors (TFs) resulted in a database of over 11,000 phenotypes (phenome). This database provides comprehensive insights into how this cereal pathogen of global significance regulates traits important for growth, development, stress response, pathogenesis, and toxin production and how transcriptional regulations of these traits are interconnected. In-depth analysis of TFs involved in sexual development revealed that mutations causing defects in perithecia development frequently affect multiple other phenotypes, and the TFs associated with sexual development tend to be highly conserved in the fungal kingdom. Besides providing many new insights into understanding the function of F. graminearum TFs, this mutant library and phenome will be a valuable resource for characterizing the gene expression network in this fungus and serve as a reference for studying how different fungi have evolved to control various cellular processes at the transcriptional level.

Highlights

  • Transcription factors (TFs) orchestrate gene expression under the control of cellular signaling pathways and are key mediators of cellular function [1]

  • We constructed a mutant library of 657 putative transcription factors (TFs) through homologous recombination in the head blight fungus, Fusarium graminearum, providing a resource for understanding gene regulation in fungus

  • This study provides new insight into understanding multiple phenotypes caused by single TF as well as regulation of gene expression at the transcription level in F. graminearum

Read more

Summary

Introduction

Transcription factors (TFs) orchestrate gene expression under the control of cellular signaling pathways and are key mediators of cellular function [1]. Understanding the regulatory mechanisms of each TF family and their function could provide valuable insight into gene expression changes underpinning cellular and developmental responses to environmental cues. Modification of TF activity through either gene disruption or overexpression can help determine the function and interconnectedness of individual TFs based on resulting cellular changes. The filamentous fungus Fusarium graminearum (teleomorph: Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops, such as wheat, barley, and rice [2]. Complete genome sequencing of F. graminearum [4] has allowed for genome-wide gene functional studies, and transcriptome data from

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call