Abstract

Xylem structure and cambial phenology (i.e. onset and cessation of cambial cell division) of conifers growing under severe water-limitations can change dramatically in relation to moisture availability. In hyperarid environments, analytical tools commonly used to investigate intra-annual variability of xylem anatomy (i.e. tracheidograms), may fail to capture the complexity of tree phenological responses to environmental conditions. This greatly limits our ability to accurately date the onset of intra-annual density variations, including the transition between earlywood and latewood. I present a new approach for developing phenological tracheidograms (“pheno-tracheidograms”) calibrated to account for the seasonal variations in cell division rates. Pheno-tracheidograms were developed for a population of Pinus ponderosa in the Mojave Desert (Nevada, USA) during the period 2015–2016 in order 1) to determine the onset date of latewood formation and 2) to investigate relationships between environmental conditions, lumen diameter, and cell wall thickness targeting specific climatic windows for each tracheid. Pheno-tracheidograms were standardized at the tree-level, showing more flexibility compared to tracheidograms standardized according to a pre-determined number of cells. By displaying cellular parameters with respect to the date of formation of the tracheid to which each measurement is associated, pheno-tracheidograms allowed to determine the beginning of latewood formation with daily resolution. Lumen diameter was significantly correlated with the onset date of cellular enlargement, while cell wall thickness showed a weaker relationship with the beginning of secondary wall deposition. Soil moisture positively affected the duration of cell enlargement and tracheid lumen diameter, particularly in the earlywood, while cell wall thickness was not significantly influenced by environmental conditions. Pheno-tracheidograms represent an empirical, yet effective way to date intra-annual xylem structures and to investigate high-resolution climate-anatomy relationships in conifer species from arid environments characterized by high phenological plasticity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.