Abstract
AbstractAdequate hole mobility is the prerequisite for dopant‐free polymeric hole‐transport materials (HTMs). Constraining the configurational variation of polymer chains to afford a rigid and planar backbone can reduce unfavorable reorganization energy and improve hole mobility. Herein, a noncovalent conformational locking via S–O secondary interaction is exploited in a phenanthrocarbazole (PC) based polymeric HTM, PC6, to fix the molecular geometry and significantly reduce reorganization energy. Systematic studies on structurally explicit repeats to targeted polymers reveals that the broad and planar backbone of PC remarkably enhances π–π stacking of adjacent polymers, facilitating intermolecular charge transfer greatly. The inserted “Lewis soft” oxygen atoms passivate the trap sites efficiently at the perovskite/HTM interface and further suppress interfacial recombination. Consequently, a PSC employing PC6 as a dopant‐free HTM offers an excellent power conversion efficiency of 22.2 % and significantly improved longevity, rendering it as one of the best PSCs based on dopant‐free HTMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.