Abstract

Memory elements, including memristor, memcapacitor, meminductor and second-order memristor, have been widely exploited recently to realize circuit systems for a broad scope of applications. This paper introduces a phasor analysis method for memory elements to help with the understanding of the complex nonlinear phenomena in circuits with memory elements. With the proposed method, all different memory elements could be described in a unified form and the series-connected circuit with memristor, memcapacitor, meminductor and second-order memristor could be simply modeled as one variable [Formula: see text]. Thus, the phasor vectors provided a way to conveniently calculate the [Formula: see text]–[Formula: see text] relation of different memory elements and to clearly understand the similarities and differences between all memory elements. Then some interesting phenomena were introduced when combining different memory elements. Moreover, a specific [Formula: see text] with certain [Formula: see text]–[Formula: see text] relations could be easily obtained with the method. And through the inverse calculation, the specific [Formula: see text] could be decomposed to a certain combination of memory elements. Meanwhile, the parameters of [Formula: see text] in the phasor domain were analyzed. Furthermore, the frequency characteristic for a [Formula: see text] circuit could be easily analyzed with the method and a particular series resonance was introduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call