Abstract

Quenched thermodynamic states of an amorphous ferromagnet are studied. The magnet is a countable collection of point particles chaotically distributed over $\mathbb{R}^d$, $d\geq 2$. Each particle bears a real-valued spin with symmetric a priori distribution; the spin-spin interaction is pair-wise and attractive. Two spins are supposed to interact if they are neighbors in the graph defined by a homogeneous Poisson point process. For this model, we prove that with probability one: (a) quenched thermodynamic states exist; (b) they are multiple if the particle density (i.e., the intensity of the underlying point process) and the inverse temperature are big enough; (c) there exist multiple quenched thermodynamic states which depend on the realizations of the underlying point process in a measurable way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.