Abstract

For biomedical photoacoustic applications, an ongoing challenge in simultaneous volumetric imaging and spectroscopic analysis arises from ultrasonic detectors lacking high sensitivity to pressure transients over a broad spectral bandwidth. Photoacoustic impulses can be measured on the basis of the ultrafast temporal dynamics and highly sensitive response of surface plasmon polaritons to the refractive index changes. Taking advantage of the ultra-sensitive phase shift of surface plasmons caused by ultrasonic perturbations instead of the reflectivity change [as is the case for traditional surface plasmon resonance (SPR) sensors], a novel SPR sensor based on phase-shifted interrogation was developed for the broadband measurement of photoacoustically induced pressure transients with improved detection sensitivity. Specifically, by encoding the acoustically modulated phase change into time-varying interference intensity, our sensor achieved an almost five-fold sensitivity enhancement (∼98 Pa noise-equivalent pressure) compared with the reflectivity-mode SPR sensing technologies (∼470 Pa) while retaining a broadband acoustic response of ∼174 MHz. Incorporating our sensor into an optical-resolution photoacoustic microscope, we performed label-free imaging of a zebrafish eye in vivo, enabling simultaneous volumetric visualization and spectrally resolved discrimination of anatomical features. This novel sensing technology has potential for advancing biomedical ultrasonic and/or photoacoustic investigations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call