Abstract

A phase-sensitive detection method that uses two diffractive optics for femtosecond nonresonant Raman spectroscopy is demonstrated. One diffractive optic is used for generating the three input pulses for the third-order nonlinear experiment, and the second is used for recombining the signal with a passively phase-locked local oscillator derived from the probe pulse. This approach allows for phase-sensitive detection, direct phase calibration, control over all field polarizations, and removal of unwanted two-pulse signal contributions. Experiments on the intermolecular dynamics of CS2 and CH3CN demonstrate that the birefringent (in-quadrature) signal amplitude is significantly greater than the dichroic (in-phase) contribution. Polarization-selective measurements are used to project the isotropic birefringent response for CS2, which suppresses reorientational dynamics and allows interaction-induced effects to be observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.