Abstract
Microfluidic spinning technology (MST), incorporating microfluidics with chemical reactions, has gained considerable interest for constructing anisotropic advanced microfibers, especially helical microfibers. However, these efforts suffer from the limited material choices, restricting their applications. Here, a new phase inversion-based microfluidic spinning (PIMS) method is proposed for producing helical microfibers. This method undergoes a physicochemical phase inversion process, which is capable of efficiently manufacturing strong (tensile stress of more than 25 MPa), stretchable, flexible and biocompatible helical microfibers. The helical microfibers can be used to fabricate bi-oriented stretchable artificial abdominal skin, preventing incisional hernia formation and promoting the wound healing without conglutination. This research not only offers a universal approach to design helical microfibers but also provides a new insight into artificial skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.