Abstract

Simple SummaryMutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in high-grade chondrosarcoma, high-grade glioma and intrahepatic cholangiocarcinoma. Due to the lack of effective treatment options, these aggressive types of cancer have a dismal outcome. The metabolism of IDH1-mutated cancer cells is reprogrammed in order to produce the oncometabolite D-2-hydroxyglutarate (D-2HG). In this clinical trial, we used the oral antidiabetic drug metformin and the oral antimalarial drug chloroquine to disrupt the vulnerable metabolism of IDH1-mutated solid tumors. We found that the combination regimen of metformin and chloroquine is well tolerated, but the combination did not induce a clinical response in this patient population. Secondly, we confirmed the clinical usefulness of D/L-2HG ratios in serum as a biomarker and the ddPCR-facilitated detection of an IDH1 mutation in circulating DNA from peripheral blood.Background: Mutations in isocitrate dehydrogenase 1 (IDH1) occur in 60% of chondrosarcoma, 80% of WHO grade II-IV glioma and 20% of intrahepatic cholangiocarcinoma. These solid IDH1-mutated tumors produce the oncometabolite D-2-hydroxyglutarate (D-2HG) and are more vulnerable to disruption of their metabolism. Methods: Patients with IDH1-mutated chondrosarcoma, glioma and intrahepatic cholangiocarcinoma received oral combinational treatment with the antidiabetic drug metformin and the antimalarial drug chloroquine. The primary objective was to determine the occurrence of dose-limiting toxicities (DLTs) and the maximum tolerated dose (MTD). Radiological and biochemical tumor responses to metformin and chloroquine were investigated using CT/MRI scans and magnetic resonance spectroscopy (MRS) measurements of D-2HG levels in serum. Results: Seventeen patients received study treatment for a median duration of 43 days (range: 7–74 days). Of twelve evaluable patients, 10 patients discontinued study medication because of progressive disease and two patients due to toxicity. None of the patients experienced a DLT. The MTD was determined to be 1500 mg of metformin two times a day and 200 mg of chloroquine once a day. A serum D/L-2HG ratio of ≥4.5 predicted the presence of an IDH1 mutation with a sensitivity of 90% and a specificity of 100%. By utilization of digital droplet PCR on plasma samples, we were able to detect tumor-specific IDH1 hotspot mutations in circulating tumor DNA (ctDNA) in investigated patients. Conclusion: Treatment of advanced IDH1-mutated solid tumors with metformin and chloroquine was well tolerated but did not induce a clinical response in this phase Ib clinical trial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.