Abstract

PurposeOsteoarthritis (OA) is associated with the loss of glycosaminoglycan (GAG) during disease progression, which can be detected by glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) MRI. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is considered one of the standard methods for GAG quantification in vivo. This Phase I study assessed the correlation between gagCEST MRI and dGEMRIC in determining cartilage GAG concentration. Standard T2 mapping was used as a comparator with the two other methods. Materials and methodsEight athletic volunteers with no known knee diseases were recruited in this study. The sagittal images of both knees in each volunteer were obtained by a 3T MRI system. GAG concentration was calculated based on fixed charge density (FCD) within articular cartilage as calculated by T1 values obtained from dGEMRIC sequences. Magnetization transfer ratio asymmetry (MTRasym) of the CEST spectrum at 1ppm was determined with gagCEST MRI. T2 values were calculated using a multi-echo turbo spin echo (TSE) sequence. The Pearson correlations among MTRasym were calculated from gagCEST analysis. ResultsThere was moderate correlation (correlation coefficient r=0.55) between dGEMRIC and gagCEST MRI results. T2 had a low correlation (r=−0.30) with gagCEST and no correlation with dGEMRIC (r=0.003). Both gagCEST and dGEMRIC were able to distinguish between high GAG concentration cartilage compartments (higher than 210mM) and low GAG cartilage compartments (lower than 210mM). ConclusiondGEMRIC was shown to be a more accurate and sensitive clinical imaging tool in evaluating cartilage GAG levels in vivo. While GagCEST showed less sensitivity to GAG concentration variations than dGEMRIC, further improvements may yet enable gagCEST to be a clinically robust methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.