Abstract

ABSTRACT In the present work, we adopt a computational approach to study the evolution of microstructure during solidification of a Ti-Fe-Co-Ni-Cu multi-component alloy system by regarding it as a Ti-(Cu, Ni)-(Fe, Co) pseudo-ternary-alloy system. The as-cast alloy has a eutectic morphology with lamellar structure between (Cu)SS and a Laves phase. A Kim-Kim-Suzuki (KKS) phase-field model for eutectic solidification is implemented for this multi-component alloy system using a MOOSE finite element framework. The model is implemented for different scenarios, which include the simulation of microstructures at eutectic temperature and for small degrees of undercoolings (ΔT = 2°C, 5°C, 8°C, 10°C). Analysis of the microstructure evolution reveals that an increase in undercooling leads to a higher growth velocity and a larger volume fraction of solid phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call