Abstract

We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples, exhibiting a good agreement with experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.