Abstract

We describe a diffuse interface, or phase field model for simulating electromigration and stress-induced void evolution and growth in interconnect lines. Microstructural evolution is tracked by defining an order parameter, which takes on distinct uniform values within solid material and voids, and varying rapidly from one to the other over narrow interfacial layers associated with the void surfaces. The order parameter is governed by a form of the Cahn–Hilliard equation. An asymptotic analysis demonstrates that the zero contour of order parameter tracks the motion of a void evolving by coupled surface and lattice diffusion, driven by stress, electron wind and vacancy concentration gradients. Efficient finite element schemes are described to solve the modified Cahn–Hilliard equation, as well as the equations associated with the accompanying mechanical, electrical and bulk diffusion problems. The accuracy and convergence of the numerical scheme is investigated by comparing results to known analytical solutions. The method is applied to solve various problems involving void growth and evolution in representative interconnect geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call