Abstract

SummaryWe introduce a phase‐field method for continuous modeling of cracks with frictional contacts. Compared with standard discrete methods for frictional contacts, the phase‐field method has two attractive features: (i) it can represent arbitrary crack geometry without an explicit function or basis enrichment, and (ii) it does not require an algorithm for imposing contact constraints. The first feature, which is common in phase‐field models of fracture, is attained by regularizing a sharp interface geometry using a surface density functional. The second feature, which is a unique advantage for contact problems, is achieved by a new approach that calculates the stress tensor in the regularized interface region depending on the contact condition of the interface. Particularly, under a slip condition, this approach updates stress components in the slip direction using a standard contact constitutive law, while making other stress components compatible with stress in the bulk region to ensure nonpenetrating deformation in other directions. We verify the proposed phase‐field method using stationary interface problems simulated by discrete methods in the literature. Subsequently, by allowing the phase field to evolve according to brittle fracture theory, we demonstrate the proposed method's capability for modeling crack growth with frictional contact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.