Abstract

AbstractIn this study, a coupled phase field (PF) method for the simulation of crack propagation and martensitic phase transformations is developed. In order to investigate the crack field and martensitic microstructure evolution the concept of the thermodynamic driving force, interfacial energy, the elastic energy, and the kinetic of phase field equations are introduced (time dependent Ginzburg Landau equation) [1]. The weak form and an algorithm for the solution of corresponding equations are implemented in the finite element program (FEAP). Since the phase transformation can form during the application of high amount of stresses, the influence of microcrack propagation on the formation of the martensitic phase has been studied. The crack tip produces high amount of concentrated stresses, which lead to a change in the distribution of the martensitic phases and it can also deviate the crack direction [2].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.