Abstract

Multi-modality image fusion provides more comprehensive and sophisticated information in modern medical diagnosis, remote sensing, video surveillance, and so on. This paper presents a novel multi-modality medical image fusion method based on phase congruency and local Laplacian energy. In the proposed method, the non-subsampled contourlet transform is performed on medical image pairs to decompose the source images into high-pass and low-pass subbands. The high-pass subbands are integrated by a phase congruency-based fusion rule that can enhance the detailed features of the fused image for medical diagnosis. A local Laplacian energy-based fusion rule is proposed for low-pass subbands. The local Laplacian energy consists of weighted local energy and the weighted sum of Laplacian coefficients that describe the structured information and the detailed features of source image pairs, respectively. Thus, the proposed fusion rule can simultaneously integrate two key components for the fusion of low-pass subbands. The fused high-pass and low-pass subbands are inversely transformed to obtain the fused image. In the comparative experiments, three categories of multi-modality medical image pairs are used to verify the effectiveness of the proposed method. The experiment results show that the proposed method achieves competitive performance in both the image quantity and computational costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.