Abstract
BackgroundMucus stasis in chronic obstructive pulmonary disease (COPD) is a significant contributor to morbidity and mortality. Potentiators of cystic fibrosis transmembrane conductance regulator (CFTR) activity pharmacologically enhance CFTR function; ivacaftor is one such agent approved to treat CF patients with the G551D-CFTR gating mutation. CFTR potentiators may also be useful for other diseases of mucus stasis, including COPD.Methods and FindingsIn primary human bronchial epithelial cells, exposure to cigarette smoke extract diminished CFTR-mediated anion transport (65.8±0.2% of control, P<0.005) and mucociliary transport (0.17±0.05 µm/sec vs. 2.4±0.47 µm/sec control, P<0.05) by reducing airway surface liquid depth (7.3±0.6 µm vs. 13.0±0.6 µm control, P<0.005) and augmenting mucus expression (by 64%, P<0.05) without altering transepithelial resistance. Smokers with or without COPD had reduced CFTR activity measured by nasal potential difference compared to age-matched non-smokers (−6.3±1.4 and −8.0±2.0 mV, respectively vs. −15.2±2.7 mV control, each P<0.005, n = 12–14/group); this CFTR decrement was associated with symptoms of chronic bronchitis as measured by the Breathlessness Cough and Sputum Score (r = 0.30, P<0.05) despite controlling for smoking (r = 0.31, P<0.05). Ivacaftor activated CFTR-dependent chloride transport in non-CF epithelia and ameliorated the functional CFTR defect induced by smoke to 185±36% of non-CF control (P<0.05), thereby increasing airway surface liquid (from 7.3±0.6 µm to 10.1±0.4 µm, P<0.005) and mucociliary transport (from 0.27±0.11 µm/s to 2.7±0.28 µm/s, P<0.005).ConclusionsCigarette smoking reduces CFTR activity and is causally related to reduced mucus transport in smokers due to inhibition of CFTR dependent fluid transport. These effects are reversible by the CFTR potentiator ivacaftor, representing a potential therapeutic strategy to augment mucociliary clearance in patients with smoking related lung disease.
Highlights
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial anion channel expressed predominantly in exocrine tissues
Cigarette smoking reduces CFTR activity and is causally related to reduced mucus transport in smokers due to inhibition of CFTR dependent fluid transport. These effects are reversible by the CFTR potentiator ivacaftor, representing a potential therapeutic strategy to augment mucociliary clearance in patients with smoking related lung disease
Our in vitro studies establish that the functional CFTR deficiency caused by smoke exposure can be ameliorated by addition of ivacaftor, thereby augmenting airway surface liquid depth and mucociliary transport. These findings suggest that CFTR potentiators may offer a new treatment paradigm for chronic obstructive pulmonary disease (COPD) associated with chronic bronchitis
Summary
Cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial anion channel expressed predominantly in exocrine tissues. Individuals with smoking-induced lung disease, and in particular those with chronic obstructive pulmonary disease (COPD) associated with chronic bronchitis [3,4], exhibit pathologic features similar to CF, including mucus stasis and accumulation [4,5,6]. While some COPD patients develop bronchiectasis [7], most exhibit chronic bacterial colonization and persistent neutrophilic airway inflammation, pathophysiologic processes reminiscent of CF lung disease [8,9]. Mucus stasis in chronic obstructive pulmonary disease (COPD) is a significant contributor to morbidity and mortality. Potentiators of cystic fibrosis transmembrane conductance regulator (CFTR) activity pharmacologically enhance CFTR function; ivacaftor is one such agent approved to treat CF patients with the G551D-CFTR gating mutation. CFTR potentiators may be useful for other diseases of mucus stasis, including COPD
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.