Abstract

Background Carbamazepine is a drug used in the treatment of neurological disorders such as epilepsy. However, due to its erratic absorption, oral bioavailability is often poor. There is, therefore, the need to develop alternative formulations for carbamazepine with better pharmacokinetic characteristics. Aim The aim of this study was to formulate an oral modified-release multiparticulate matrix of carbamazepine from cocoa pod husk (CPH) pectin and evaluate the pharmacokinetic profile of this formulation using in vitro and in vivo models. Methods CPH pectin was extracted from cocoa pod husks with hot aqueous and citric acid solutions. Oral multiparticulate carbamazepine matrices were formulated from CPH pectin cross-linked with calcium. The formulation was evaluated for carbamazepine content and release profile in vitro. For in vivo pharmacokinetic profile estimation, rats were put into 4 groups of 5 animals each to receive carbamazepine multiparticulate matrix formulations A and B, carbamazepine powder, and Tegretol CR®. Animals in each group received 200 mg/kg of each drug via the oral route. Maximum plasma concentration (Cmax), area under the concentration-time curve (AUC), elimination rate constant (Ke), and terminal half-life (t1/2) of the formulations were estimated by noncompartmental analysis. Results The pectin extraction from fresh cocoa pod husks using hot aqueous and citric acid solutions gave pectin yields of 9.63% and 11.54%, respectively. The drug content of carbamazepine in CPH pectin formulations A and B was 95% and 96%, respectively. There was controlled and sustained release of carbamazepine for both formulations A and B in vitro. AUC0⟶36 (176.20 ± 7.97 µg.h/mL), Cmax (8.45 ± 0.71 μg/mL), Tmax (12 ± 1.28 h), and t1/2 (13.75 ± 3.28 h) of formulation A showed a moderately enhanced and comparable pharmacokinetic profile to Tegretol CR® (AUC0⟶36: 155 ± 7.15 µg.h/mL, Cmax: 8.24 ± 0.45 μg/mL, Tmax: 8.0 ± 2.23 h, and t1/2: 13.51 ± 2.87 h). Conclusion Findings from the study suggest that formulations of CPH pectin had the potential to control and maintain therapeutic concentrations of carbamazepine in circulation over a period of time in the rat model.

Highlights

  • Epilepsy is a common neurological disorder characterized by unprovoked seizures

  • Previous reports suggest that cocoa pod husk (CPH) pectin-based matrices are useful in enhancing bioavailability and release profiles of drugs [9]

  • Carbamazepine is relatively inexpensive compared to newer antiepileptic drugs such as gabapentin and topiramate [5]; it is the drug of choice for many patients with epilepsy in resource-poor settings. ere is, paucity of data on the role of CPH pectin-based drug delivery systems in the release and absorption of carbamazepine. e aim of the current study was to investigate the pharmacokinetic profile of formulated CPH pectin-based oral multiparticulate matrix of carbamazepine

Read more

Summary

Background

Carbamazepine is a drug used in the treatment of neurological disorders such as epilepsy. Aim. e aim of this study was to formulate an oral modified-release multiparticulate matrix of carbamazepine from cocoa pod husk (CPH) pectin and evaluate the pharmacokinetic profile of this formulation using in vitro and in vivo models. CPH pectin was extracted from cocoa pod husks with hot aqueous and citric acid solutions. For in vivo pharmacokinetic profile estimation, rats were put into 4 groups of 5 animals each to receive carbamazepine multiparticulate matrix formulations A and B, carbamazepine powder, and Tegretol CR®. E drug content of carbamazepine in CPH pectin formulations A and B was 95% and 96%, respectively. Findings from the study suggest that formulations of CPH pectin had the potential to control and maintain therapeutic concentrations of carbamazepine in circulation over a period of time in the rat model

Introduction
Methods
Results
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.