Abstract

Nonadherence to medication is a major public health problem. To combat nonadherence, some clinicians have suggested using "forgiving" drugs, which maintain efficacy in spite of delayed or missed doses. What pharmacokinetic (PK) and pharmacodynamic (PD) factors make a drug forgiving? In this paper, we address this question by analyzing a linear PK/PD model for a patient with imperfect adherence. We assume that the drug effect is far from maximal and consider direct effect, effect compartment (biophase), and indirect response PD models. We prove that the average drug effect relative to the clinically desired effect is simply the fraction of prescribed doses actually taken by the patient. Hence, under these assumptions, drug forgiveness cannot be defined in terms of the average effect. We argue that forgiveness should instead be understood in terms of effect fluctuations. We prove that the rates of PK absorption, PK elimination, and PD elimination are exactly equivalent for determining effect fluctuations. We prove all the aforementioned results for any pattern of nonadherence, including late doses, missed doses, drug holidays, extra doses, etc. To obtain quantitative estimates of effect fluctuations, we consider a simple statistical pattern of nonadherence and analytically calculate the coefficient of variation of effect. We further show how effect fluctuations can be reduced by taking an extra "make up" dose following a missed dose if any one of the aforementioned PK/PD rates is sufficiently slow. We illustrate some of our results for a nonlinear indirect response model of metformin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call