Abstract

pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR has a blue-shifted absorption maximum (500 nm) relative those of other archaeal rhodopsins such as the proton-pump bacteriorhodopsin (BR; 570 nm). Among the 25 amino acids that are within 5 A of the retinal chromophore, 10 are different in BR and ppR, and they are presumed to be crucial in determining the color of their chromophores. However, the spectral red shift in a multiple mutant of ppR, in which the retinal binding site was made similar to that of BR (BR/ppR), was smaller than 40% (lambda(max) = 524 nm) than expected. In the paper presented here, we report on low-temperature Fourier transform infrared (FTIR) spectroscopy of BR/ppR, and compare the infrared spectral changes before and after photoisomerization with those for ppR and BR. The C[bond]C stretch and hydrogen out-of-plane (HOOP) vibrations of BR/ppR were similar to those of BR, suggesting that the surrounding protein moiety of BR/ppR becomes like BR. However, BR/ppR exhibited a unique IR band regarding the hydrogen bond of the protonated Schiff base. It has been known that ppR has a stronger hydrogen bond for the Schiff base than BR as judged from the frequency difference between their C[double bond]NH and C[double bond]ND stretches. We now find that replacement of the 10 amino acids of BR with ppR (BR/ppR) does not weaken the hydrogen bond of the Schiff base. Rather, the hydrogen bond in BR/ppR is stronger than that in the native ppR. We conclude that the principal factor of the smaller than expected opsin shift in BR/ppR is the strong association of the Schiff base with the surrounding counterion complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.