Abstract

To systematically evaluate the physical image quality of low-dose computed tomography (LDCT) on CT scanners from 5 different manufacturers using a phantom model. CT images derived from a Catphan 500 phantom were acquired using manufacturer-specific iterative reconstruction (IR) algorithms and deep learning image reconstruction (DLIR) on CT scanners from 5 different manufacturers and compared using filtered back projection with 2 radiation doses of 0.25 and 0.75 mGy. Image high-contrast spatial resolution and image noise were objectively characterized by modulation transfer function (MTF) and noise power spectrum (NPS). Image high-contrast spatial resolution and image low-contrast detectability were compared directly by visual evaluation. CT number linearity and image uniformity were compared with intergroup differences using one-way analysis of variance (ANOVA). The CT number linearity of 4 insert materials were as follows: acrylic (95% CI: 120.35 to 121.27; P=0.134), low-density polyethylene (95% CI: -98.43 to -97.43; P=0.070), air (95% CI: -996.16 to -994.51; P=0.018), and Teflon (95% CI: 984.40 to 986.87; P=0.883). The image uniformity values of GE Healthcare (95% CI: 3.24 to 3.83; P=0.138), Philips (95% CI: 2.62 to 3.70; P=0.299), Siemens (95% CI: 2.10 to 3.59; P=0.054), Minfound (95% CI: 2.35 to 3.65; P=0.589), and Neusoft (95% CI: 2.63 to 3.37; P=0.900) were evaluated and found to be within ±4 Hounsfield units (HU), with a range of 0.99-2.76 HU for standard deviations. There was no statistically significant difference in CT number linearity and image uniformity across the 5 CT scanners under different radiation doses with IR and DLIR algorithms (P>0.05). The resolution level at 10% MTF was 6.98 line-pairs-per-centimeter (lp/cm) on average, which was similar to the subjective evaluation results (mostly up to 7 lp/cm). DLIR at all 3 levels had the highest 50% MTF values among all reconstruction algorithms. For image low-contrast detectability, the minimum diameter of distinguishable contrast holes reached 4 mm at a 0.5% resolution. Increasing the radiation dose and IR strength reduced the image noise and NPS curve peak frequency while improving image low-contrast detectability. This study demonstrated that the image quality of CT scanners from 5 different manufacturers in LDCT is comparable and that the CT number linearity is unbiased and can contribute to accurate bone mineral density quantification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call