Abstract

A pH-sensitive molecularly imprinted polymer (MIP) nanospheres/hydrogel composite exhibiting controlled release of dexamethasone-21 phosphate disodium (DXP) was developed as a potential coating for implantable biosensors to improve their biocompatibility. The molecularly imprinted pH-sensitive nanospheres were prepared by UV-initiated precipitation polymerization using DXP as the template molecule. The DXP loading and release experiments showed that the MIP nanospheres exhibited a higher loading level and slower release rate than non-imprinted polymer (NIP) nanospheres due to the interaction of DXP with the DXP-imprinted cavities within the MIP nanospheres. Furthermore, the MIP nanospheres exhibited a faster DXP release rate at a lower pH value within the pH range tested (i.e., 6.0–7.4), which is desirable for suppressing inflammation because inflammation induces an acidic microenvironment. In contrast, the NIP nanospheres did not show a notable pH-responsive DXP release behavior. The hydrogel poly(2-hydroxyethyl methacrylate (HEMA) -N-vinyl-2-pyrrolidinone (NVP) -2-methacryloyloxyethyl phosphorylcholine (MPC)) was prepared by UV polymerization. The MIP nanospheres were successfully incorporated into the hydrogel. The equilibrium water content and swelling kinetics of the MIP nanospheres/hydrogel composite were similar to those of pure hydrogel. The MIP nanospheres/hydrogel composite exhibited a much better controlled DXP release profile than the pure hydrogel. This pH-sensitive MIP nanospheres/hydrogel composite designed as a coating for implantable biosensors can potentially suppress the inflammation response of the implanted biosensors efficiently thereby effectively improving their lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call