Abstract

Multidrug resistance (MDR) resulting from the overexpression of drug transporters such as P-glycoprotein (Pgp) increases the efflux of drugs and thereby limits the effectiveness of chemotherapy. To address this issue, this work develops an injectable hollow microsphere (HM) system that carries the anticancer agent irinotecan (CPT-11) and a NO-releasing donor (NONOate). Upon injection of this system into acidic tumor tissue, environmental protons infiltrate the shell of the HMs and react with their encapsulated NONOate to form NO bubbles that trigger localized drug release and serve as a Pgp-mediated MDR reversal agent. The site-specific drug release and the NO-reduced Pgp-mediated transport can cause the intracellular accumulation of the drug at a concentration that exceeds the cell-killing threshold, eventually inducing its antitumor activity. These results reveal that this pH-responsive HM carrier system provides a potentially effective method for treating cancers that develop MDR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.