Abstract

In this paper, we designed and synthesized a two-dimensional fluorescent covalent organic framework (TAPB-DMTP-COF) for the precise determination of H2O content in methanol. The COF was synthesized using two typical monomers by grinding method, which significantly reduced the synthesis time. By adjusting the pH value of the COF suspension to 4.0, the portion of the COF material structure is disrupted, thereby mitigating π-π stacking and resolving the aggregation-caused quenching (ACQ) effect. Consequently, the non-fluorescent TAPB-DMTP-COF exhibited blue-purple fluorescence emission in methanol. At the same time, it is observed that in the presence of H2O, there is a red shift in the maximum fluorescence emission peak of TAPB-DMTP-COF, which correlates with the H2O content within a specific range. Notably, this redshift demonstrates a linear relationship with H2O content from 4% to 80% in methanol. Our work presents novel insights for efficient analysis and detection of H2O content in methanol and could be used for H2O detection in other organic solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call