Abstract

We present a new tunably accurate Laguerre Petrov--Galerkin spectral method for solving linear multiterm fractional initial value problems with derivative orders at most one and constant coefficients on the half line. Our method results in a matrix equation of special structure which can be solved in $\mathcal{O}(N \log N)$ operations. We also take advantage of recurrence relations for the generalized associated Laguerre functions (GALFs) in order to derive explicit expressions for the entries of the stiffness and mass matrices, which can be factored into the product of a diagonal matrix and a lower-triangular Toeplitz matrix. The resulting spectral method is efficient for solving multiterm fractional differential equations with arbitrarily many terms, which we demonstrate by solving a fifty-term example. We apply this method to a distributed order differential equation, which is approximated by linear multiterm equations through the Gauss--Legendre quadrature rule. We provide numerical examples demonstra...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.