Abstract

The generalized regularized long wave (GRLW) equation is solved numerically by the Petrov–Galerkin method which uses a linear hat function as the trial function and a quintic B-spline function as the test function. Product approximation has been used in this method. A linear stability analysis of the scheme shows it to be conditionally stable. Test problems including the single soliton and the interaction of solitons are used to validate the suggested method, which is found to be accurate and efficient. Finally, the Maxwellian initial condition pulse is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.