Abstract

In this paper, we are concerned with existence, uniqueness and numerical approximation of the solution process to an initial value problem for stochastic fractional differential equation of Riemann-Liouville type. We propose and analyze a Petrov-Galerkin finite element method based on fractional (non-polynomial) Jacobi polyfractonomials as basis and test functions. Error estimates in L2 norm are derived and numerical experiments are provided to validate the theoretical results. As an illustrative application, we generate sample paths of the Riemann-Liouville fractional Brownian motion which is of importance in many applications ranging from geophysics to traffic flow in telecommunication networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.