Abstract

Whole-cell modeling aims to incorporate all main genes and processes, and their interactions of a cell in one model. Whole-cell modeling has been regarded as the central aim of systems biology but also as a grand challenge, which plays essential roles in current and future systems biology. In this paper, we analyze whole-cell modeling challenges and requirements and classify them into three aspects (or dimensions): heterogeneous biochemical networks, uncertainties in components, and representation of cell structure. We then explore how to use different Petri net classes to address different aspects of whole-cell modeling requirements. Based on these analyses, we present a Petri nets-based framework for whole-cell modeling, which not only addresses many whole-cell modeling requirements, but also offers a graphical, modular, and hierarchical modeling tool. We think this framework can offer a feasible modeling approach for whole-cell model construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.