Abstract

With wafer residency time constraints for some wafer fabrication processes, such as low pressure chemical-vapor deposition, the schedulability and scheduling problems are still open. This paper aims to solve both problems. A Petri net (PN) model is developed for the system. This model describes when the robot should wait and a robot wait is modeled as an event in an explicit way. Thus, to schedule a single-arm cluster tool with wafer residency time constraint is to decide how long a robot wait should be. Based on this model, for the first time, we present the necessary and sufficient conditions under which a single-arm cluster tool with residency time constraints is schedulable, which can be checked analytically. Meanwhile, a closed form scheduling algorithm is developed to find an optimal periodic schedule if it is schedulable. Also, a simple method is presented for the implementation of the periodic schedule for steady state, which is not seen in any previous work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.