Abstract

AbstractDesigning novel fluorophores with nonplanar structure and environmental sensitivity is of great significance for the development of high‐performance film‐based fluorescent sensors. Herein, a unique pentiptycene (P) and perylene bisimide (PBI)‐contained fluorescent dyad (P‐PBI‐P) displaying a switchable and tunable charge separated state is reported. It is demonstrated that this symmetrical and dumbbell‐like molecular dyad shows a greater extent of photoinduced intramolecular electron transfer than the asymmetrical dyad, P‐PBI. In addition, the charge separated state (P+‐PBI−‐P/P‐PBI−‐P+) of the fluorophore is super susceptive to solvent polarity, allowing sensitive detection of water content in organic liquids. Based on the finding, two P‐PBI‐P‐based fluorescent humidity sensors are fabricated, and they both show linear responses to air humidity within a range of at least 6.3% to 100% (relative humidity, RH). The response time is less than a few seconds, and the recovery time less than 1 min. Importantly, almost no hysteresis is found during a cyclic humidification and dehumidification test within the whole RH range studied. The superior performance of the humidity sensors based on the modulation of the charge separated state of a fluorophore constitutes an effective way for designing high‐performance film‐based fluorescent sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call