Abstract

We develop a formalism of the non-singular evaluation of the disturbing function and its derivatives with respect to the canonical variables. We apply this formalism to the case of the perturbed motion of a massless body orbiting the central body (Sun) with a period equal to that of the perturbing (planetary) body. This situation is known as the ‘co-orbital’ motion, or equivalently, as the 1/1 mean motion commensurability. Jupiter's Trojan asteroids, Earth's co-orbital asteroids (e.g., (3753) Cruithne, (3362) Khufu), Mars' co-orbital asteroids (e.g., (5261) Eureka), and some Jupiter-family comets are examples of the co-orbital bodies in our solar system. Other examples are known in the satellite systems of the giant planets. Unlike the classical expansions of the disturbing function, our formalism is valid for any values of eccentricities and inclinations of the perturbed and perturbing body. The perturbation theory is used to compute the main features of the co-orbital dynamics in three approximations of the general three-body model: the planar-circular, planar-elliptic, and spatial-circular models. We develop a new perturbation scheme, which allows us to treat cases where the classical perturbation treatment fails. We show how the families of the tadpole, horseshoe, retrograde satellite and compound orbits vary with the eccentricity and inclination of the small body, and compute them also for the eccentricity of the perturbing body corresponding to a largely eccentric exoplanet's orbit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.