Abstract

Artificial intelligence and machine learning techniques are increasingly used for different tasks related to method development in liquid chromatography. In this study, the possibilities of a reinforcement learning algorithm, more specifically a deep deterministic policy gradient algorithm, are evaluated for the selection of scouting runs for retention time modeling. As a theoretical exercise, it is investigated whether such an algorithm can be trained to select scouting runs for any compound of interest allowing to retrieve its correct retention parameters for the three-parameter Neue-Kuss retention model. It is observed that three scouting runs are generally sufficient to retrieve the retention parameters with an accuracy (mean relative percentage error MRPE) of 1 % or less. When given the opportunity to select additional scouting runs, this does not lead to a significantly improved accuracy. It is also observed that the agent tends to give preference to isocratic scouting runs for retention time modeling, and is only motivated towards selecting gradient scouting runs when penalized (strongly) for large analysis/gradient times. This seems to reinforce the general power and usefulness of isocratic scouting runs for retention time modeling. Finally, the best results (lowest MRPE) are obtained when the agent manages to retrieve retention time data for % ACN at elution of the compound under consideration that spread the entire relevant range of ACN (5 % ACN to 95 % ACN) as well as possible, i.e., resulting in retention data at a low, intermediate and high % ACN. Based on the obtained results, we believe reinforcement learning holds great potential to automate and rationalize method development in liquid chromatography in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.