Abstract

The selective catalytic reduction (SCR) of NOx with NH3 to harmless N2 and H2O plays a crucial role in reducing highly undesirable NOx acid gas emissions from large utility boilers, industrial boilers, municipal waste plants, and incinerators. The supported V2O5–WO3/TiO2 catalysts have become the most widely used industrial catalysts for these SCR applications since introduction of this technology in the early 1970s. This Perspective examines the current fundamental understanding and recent advances of the supported V2O5–WO3/TiO2 catalyst system: (i) catalyst synthesis, (ii) molecular structures of titania-supported vanadium and tungsten oxide species, (iii) surface acidity, (iv) catalytic active sites, (v) surface reaction intermediates, (vi) reaction mechanism, (vii) rate-determining-step, and (viii) reaction kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.