Abstract

Nanozymes and aptamers have long been integral parts of the biosensing field. Recent advancements in these areas have culminated in the creation of a novel class of biosensors known as nanozyme-based aptasensors. In these sensors, aptamers confer specificity to the target analyte, while nanozymes function as transducers, converting a binding event (the binding of the aptamer to its target) into a detectable signal. Despite their promising potential and diverse applications, the detection of small-target molecules, like antibiotics, toxins, metal ions, etc., using nanozyme-based aptasensors remains challenging. This perspective focuses on the obstacles associated with the selection of aptamers for small targets, the design and efficiency of nanozymes, and their integration into functional sensors. In the current perspective, we outline the key challenges and propose various strategies to overcome these hurdles, drawing lessons from past failures to inspire further research for detection of small-target molecules. By incorporating these measures, the performance of nanozyme-based aptasensors to detect small-target molecules can be significantly improved, leading to more effective detection platforms with enhanced sensitivity in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.