Abstract

In 2007, diabetes affected around 244 million people across the globe. The number of diabetics worldwide is projected to reach 370 million by 2030. With diabetes incidence reaching epidemic proportions globally, diabetic nephropathy (DN) has emerged as one of the most difficult health conditions. Although therapeutic approaches such as rigorous blood glucose and blood pressure management are successful in preventing DN, they are far from ideal, and the number of diabetic patients with endstage renal disease continues to grow. As a result, a unique treatment approach for DN should be devised. There is mounting evidence that advanced glycation end products (AGEs), senescent macro protein derivatives generated at an accelerated pace in DN, contribute to DN by generating oxidative stress. The purpose of this article is to discuss the pathophysiological significance of AGEs and their receptor in DN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.