Abstract

Granted with a potent ability to interact with and tolerate oxidative stressors, RBCs scavenge most reactive oxygen and nitrogen species (RONS) generated in circulation. This essential non-canonical function, however, renders RBCs susceptible to damage when vascular RONS are generated in excess, making vascular redox imbalance a common etiology of anemia, and thus a common indication for transfusion. This accentuates the relevance of impairments in redox metabolism during hypothermic storage, as the exposure to chronic oxidative stressors upon transfusion could be exceedingly deleterious to stored RBCs. Herein, we review the prominent mechanisms of the hypothermic storage lesion that alter the ability of RBCs to scavenge exogenous RONS as well as the associated clinical relevance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call