Abstract

Catalyst precise synthesis at the atomic level is of great importance for establishing structure–activity relationships and developing advanced catalysts with high efficiency. Atomic layer deposition (ALD) relies on sequential self-limiting molecular surface reactions on substrates. Such unique features not only ensures to achieve uniform deposition on powder surfaces with high surface areas, but also offers a powerful capability of control of the deposited materials with near atomic precision. This perspective will discuss new opportunities in atomically-precise synthesis of heterogeneous catalysts using ALD. As examples, I will describe the recent key developments in ALD synthesis of supported metal single atoms, homonuclear and heteronuclear dimers, bimetallic nanoparticles as well as atomically-dispersed metal (hydro)oxide species on metal nanoparticles to form 3-dimentional metal–oxide interfaces. Such atom-by-atom construction of supported catalysts from the bottom up is hardly achieved by other synthetic methods, thus would greatly deepen atomic-level understanding of structure–activity relationships. Given the rapid development of technologies in ALD coating on powders at a large scale, atom-by-atom synthesis of heterogeneous catalysts using ALD sheds dawn light on precise catalysis for industrial applications in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.