Abstract

In many practical geochemical systems that are at the center of providing indispensable energy, resources and service to our society, (bio)geochemical reactions are coupled with other physical processes, such as multiphase flow, fracturing and deformation. Predictive understanding of these processes in hosting and evolving porous media is the key to design reliable and sustainable practices. In this article, we provide a brief review of recent developments and applications of reactive transport modeling to study geochemically driven processes and alteration in porous media. We also provide a perspective on opportunities and challenges for continuously developing and expanding the role of this valuable methodology to advance fundamental understanding and transferable knowledge of various dynamic geochemical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.