Abstract

Nowadays, Electronic Commerce (EC) provides a new gateway for customers shopping online. One of the most significant advantages offered by online shops is convenience. Online shopping is no longer a time-consuming task and, in fact, is an energy-saving activity. Therefore, shortening customers' product searching time is the key to an online shop's success. In order to serve customers instantly and efficiently, it is essential to recognize each customer's unique and particular needs and recommend a personalized shopping list. In this paper, we construct a recommendation system based on a modified product taxonomy and customer classification to identify customers' shopping behavior: product addictive, brand addictive or a hybrid addictive. By analyzing each customer's preferred brand or product, our proposed system can recommend products to customers either at the general or at the specific levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.